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The approximate use of the complex gamma function in 
some wave propagation problems 

J Heading 
Department of Applied Mathematics, The University College of Wales, Aberystwyth, Cards, 
UK 

Received 14 February 1973 

Abstract. After a historical survey ofthe problem ofthe potential barrier, and an examination 
of the types of approximations introduced and the reason for them, certain fallacious 
processes are discussed whereby the complex gamma function is given false approximate 
representations by means of exponential functions. 

Two kinds of problems involving complex barriers are then examined; firstly the pheno- 
menon of resonant tunnelling through two complex potential barriers, and secondly reflection 
phenomena arising from a single complex barrier. The common fallacies are also examined, 
and the proper treatment of these problems shows when the complex gamma function must 
be retained and when it can be dispensed with. 

1. Introduction 

Approximate phase-integral methods have often been applied to the barrier and multi- 
barrier problem governed by the differential equation 

d2w 
dz2 
-+k2q(z)w = 0, 

in which we shall call the function q(z)  the carrier. Historical surveys may be found in the 
works by Heading (1962), and Berry and Mount (1972). Originally, the method was 
applied to the problem of one real transition point (a point where 9(z) vanishes), the 
carrier being real along the real axis. Connection formulae linking the approximate 
WKBJ solutions across the transition point were derived by various methods, though 
considerable confusion existed about the validity of the reversibility of that particular 
connection formula that traced an exponentially large solution along a Stokes line 
across the transition point towards the anti-Stokes line on the other side. Later, this 
theory for one real transition point was generalized, for example by Furry (1947), to 
include one complex transition point. 

The first applications to  quantum mechanics were to potential wells, for which the 
carrier is real for real z ,  possessing two real transition points, the carrier being positive 
between them. The use of the non-disputed connection formula across both transition 
points easily gave the Bohr-Sommerfeld quantization condition. The second application 
was to  the phenomenon of tunnelling through a potential barrier, the carrier again being 
real, but negative between the two real transition points. The process of tracing a 
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solution through the two transition points now necessitated the use of one connection 
formula in the disputed direction. The approximate values of the moduli of the reflection 
and transmission coefficients are now expressed in terms of a small exponential function, 
involving the integral of the square root of the carrier between the two transition points. 

The propagation of waves in dissipative stratified media also demands the use of this 
method. Thus ionospheric radio propagation often makes use of the connection formulae 
in problems involving one and two transition points. The existence of an energy loss 
mechanism in the underlying physical processes of the problem means that the transition 
points are now complex points in the complex z plane, the direction of propagation 
being along the real z axis. It has, however, often been assumed that the formulae 
derived when the carrier is real are also valid when the carrier is complex, and this has 
given rise to many erroneous applications of the method. The same interpretative errors 
are also often made in the approximate analysis of the quantum mechanical phenomenon 
of resonant tunnelling. 

However, the problem with precisely two transition points can be solved exactly, 
the connection formulae across both transition points being expressed in terms of the 
complex gamma function. These formulae can also be used in the case where there are 
two effective transition points (others existing in the complex plane), and the approximate 
connection formulae are then known as semiclassical parabolic connection formulae. 
When the carrier is real along the real axis, these gamma functions are of a special form 
involving the integral of the square root of the carrier between the transition points, 
expressible as r ( i4)  where 4 is real. In consequence, the moduli of the gamma functions 
can be expressed in terms of hyperbolic functions. 

Three, four or more transition points along the real z axis can be dealt with by these 
methods, either using the appropriate connection formulae across each transition point 
separately, or using the semiclassical parabolic formulae across each barrier, suitably 
connecting the solutions across each well (see Heading 1962, p 119, Connor 1968, 
Dickinson 1970, Froman and Dammert 1970, Yngve 1972, Froman et a1 1972). The 
extent to  which the traditional formulae relating to  the transition points taken separately 
can be used in such problems has been investigated by Heading (1973), where it is shown 
that this extent is very limited. 

Dangers and analytical errors have arisen when formulae derived relating to several 
real transition points are then assumed without comment to  apply to the same number of 
complex transition points ; several of the above-mentioned authors fall into this trap, 
though not Froman and Froman and their collaborators. I t  may appear to be very 
satisfying to  use sinh m$ in the evaluation of Ir(i4)I when 4 is real, but this usage rests 
on very insecure foundations when 4 is complex even when the imaginary part of 4 is 
small compared with the real part. 

The approximate wave-like solutions of the WKBJ type are always exponential 
in form, either of the propagating or evanescent variety. Consequently such solutions 
are always susceptible to  physical interpretation, and moreover can easily be calculated 
numerically from elementary tables. Additionally, when there is one transition point, 
the reflection coefficient is also expressed in terms of a complex exponential function, and 
this too is susceptible to interpretation in the sense that the incident wave can be traced 
through the complex z plane to emerge as a reflected wave (see Budden 1961, p 439). 
Similarly in the problem of the potential well ; exponential functions arise which may be 
interpreted in terms of standing waves in the well. 

When a barrier, however, is considered, there is still the desire to use the complex 
exponential function (based upon its ease of numerical evaluation, and upon an intuitive 
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feeling for its physical interpretation), and this has led to its use even when analytically it 
is completely wrong to  do  so. For two transition points defining a barrier, the appropri- 
ate formulae must involve the gamma function of a complex argument, but its use has not 
been widely recognized, partly owing to  the lack of accessibility of comprehensive tables, 
to the fact that the function possesses but few properties expressible in terms of the more 
elementary functions, and to  the fact that a direct physical interpretation of the function 
is lacking. Lack of experience with the properties of the gamma function has caused a 
number of investigators in almost mutually exclusive fields to  use certain formulae 
associated with it in domains beyond the validity of the original formulae, or to use 
certain off-shoot formulae of the gamma function wrongly, not realizing that they were 
derived from the gamma function under restricted conditions. 

In particular, we may mention the work of Hayes (1973). who considers the transition 
from locked to leaky modes in tropospheric radio propagation. He uses the exponential 
approximation to  the problem which implicitly uses the complex gamma function 
without i t  being specifically mentioned, and then extends it beyond its proper domain of 
validity. The false formula is derived in his paper by an argument that itself contains a 
vital flaw through not keeping track of the nature and effects of the errors involved in the 
approximation process. 

The same kind of mistake occurs in the work of Connor (1968) and others. They 
consider resonant phenomena in a system of two potential barriers that requires complex 
eigenvalues. The formulae derived are based on the assumption that the gamma functions 
involved are of the form T(i4) where 4 is real, but that they may be used without explana- 
tion when 4 is complex. The correct approximate analytical treatment of this problem is 
considered in the present paper. 

The fault in these and similar investigations lies in the failure to  state at the beginning 
the class of admissible functions q(z) and then to  be consistent throughout the investiga- 
tion. To commence with one class of functions. and then to  assume that the derived 
formulae are applicable to an extended class of functions is the ultimate reason for the 
existence of these prevalent mistakes. 

I t  appears necessary therefore to make some observations on the use of the gamma 
function in barrier penetration problems, particularly, but not exclusively, when the 
barrier is not wide with the two transition points defining the barrier lying near the top of 
the barrier. We also propose to examine the conditions under which explicit reference to 
the complex gamma function can be dispensed with owing to  simpler formulae being 
available. to note when approximate formulae can be employed, to examine the nature 
of the analytical mistakes that have plagued work in the past, to recognize the existence 
of error terms that may be much larger than some small exponential terms otherwise 
present, and to note when the gamma function cannot be dispensed with. 

2. The class of functions under discussion 

The function f ( z )  is given to be an analytic function of z for all z ,  except at isolated 
singularities not lying on the real z axis, such points being too far removed from the 
domain of consideration around the real axis to  be of relevance in the approximation 
theory. Moreover. we shall specify that f ( z )  is real for real z ,  though this restriction may 
be removed in other applications. I f  A is a complex constant, we define q(z)  to equal 
f (z1-A.  
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We take the differential equation governing wave propagation to be 

d2w 
dz2 
-+k2(f(z)-A)w = 0. 

We further assume that the number of zeros of the function q lying near the real axis is 
restricted, and that they lie in a domain near the origin, thereby ensuring that the z plane 
is free from such transition points in some domain containing the real z axis as z + & CO. 

The WKBJ solutions for large IzI along and near the real axis will be of the form 

q-' exp( & ik J(f- A )  dz) . 

I t  is necessary to decide whether an anti-Stokes line either lies along or is asymptotic 
to the real axis as z + f x, namely if I m y  J(f- A)  dz + 0 or constant as z + f x. If, 
for example. f(z) = z", n > 2, we have 

and the imaginary part of this expression tends to zero since i n -  1 > 0. But this is not 
true when 0 < n < 2. For example, i f f  tends to  a constant, c say, the indefinite integral 
tends to  z,/(c- A)  which certainly is not real for real z when A is complex. In the former 
case, an anti-Stokes line either lies along, or is asymptotic to the real axis as z + i E, 

while in the latter case this is not so. In the former case, a wave propagating along the 
real z axis in the positive direction is represented by a WKBJ solution that becomes 
subdominant in a domain where Im z becomes negative from the real axis (see Budden 
1961, p 442, Heading 1962, p 74). The resonant condition imposed in this investigation 
is that waves should be outgoing along both the positive and negative real z axes, implying 
that the solution must be subdominant in those domains where Im z becomes negative or 
positive from the positive and negative real z axes respectively. This resonant condition 
then yields complex values of the parameter A. 

But in the latter case where the positive and negative real axes for large (z(  lie wholly 
within domains in which solutions become dominant or subdominant, the boundary 
conditions to be imposed are that solutions must be subdominant along both the 
positive and negative real axes for large IzI, yielding complex eigenvalues of the para- 
meter A. 

Xrestricting ourselves to the case when A has only a small imaginary part, the 
anti-Stokes lines in the latter case will deviate angularly only slightly from the real axis, 
The two cases may then be considered as one, provided subdominant domains exist 
adjacent to the anti-Stokes lines as arg z decreases from the anti-Stokes line, as shown in 
figure 1. This stipulation yields an equation giving the complex eigenvalues of A. 

AH--- -- - - - Subdominant -2 -- 
Subdominant_,- -- $ 2  

4- - 
Figure 1. Domains of subdominant solutions with respect to the positive and negative real 
axes. 
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3. The double barrier probiem 

When A is real, we assume thatf(z) is such that q = f ( z )  - A possesses four single transi- 
tion points on the real axis, namely z = a, b, c, d in order, such that f -  A < 0 within the 
two barriers a < z < b, c < z < d .  When A is slightly complex, the transition points will 
move off the real axis. Transmission formulae through the double barrier will be derived 
using transmission formulae through each barrier separately, the solutions being joined 
together within the well b < z < c. 

In figure 2, points A ,  B,  C, D lie on the real axis at positions nearest to  the complex 
points a, b, c, d.  

Figure 2. Positions of the complex transition points for 

One wave along the real axis to the left of A is given by 

a double barrier with energy loss. 

the WKBJ solution 

( z ,  a) = * q-* exp( -ik J: 4* dz) 

using the convenient notation introduced by the author to  designate WKBJ solutions 
(Heading 1962). Here, arg q = 0 when A is real, but small when A is slightly complex. 
This wave propagates to  the right, or at least is dominant above the anti-Stokes line aM 
in the domain containing the negative z axis. The wave that propagates to  the left, or that 
is subdominant above the line a M ,  is 

(a, z )  * q-a exp( ik 1 q* dz) . 

The star denotes that the right-hand side contains an error term that cannot be explicitly 
stated. The reason for keeping track of this fact is that serious mistakes can be made as 
soon as terms on the right-hand side become equal in magnitude to the error terms 
recognized as being present. In the two WKBJ solutions, the error terms involved tend 
to zero in the unbounded domain Iz( -+ CO. 

In the well BC, we similarly define two waves represented by ( z ,  b) propagated to the 
right, and (b, z) to  the left. But the approximate waveforms contain errors that cannot be 
obliterated, since the domain B < z < C is not unbounded. Again, in this well, arg q 
is chosen to vanish when A is real, but differs slightly from zero when A is slightly complex. 

Let R 1, Tl denote the reflection and transmission coefficients for the barrier produced 
by the transition points a, b when incidence takes place from the left, and let R; and T i  
denote these coefficients when incidence takes place from the right. We thus have the two 
connection formulae across the barrier : 
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or arranged in matrix notation, 

Similarly for the second barrier t o  the right, we have the connection formulae along 
the real axis 

Noting that 

(b, z )  = [b, cl(c, z), 
where [b, c]  (in square brackets, denoting that no factor q-* is involved), with the same 
stipulation on arg q as before, is defined by 

[b, c] exp( ik J: qi dz),  

we see that 

(2 ; ) - l ( ;  ;;)([?I [bPc])-'(E :)-I(: ;;)(;:::;) ++* (:# 
where implicit errors are involved in the joining up process within the well. 

is connected to  the waves on the left by the relation 

([b, cl-R2R;[c, bl)(z,  a)+{[b, clR, +[c, bIR,(-R;R, + TiT,)}(a, z) -* T1T2(z, 4. 
Resonance occurs when the coefficient of ( z ,  a) vanishes, namely when there is no 

incident wave or when the solution is subdominant as z + - x. Hence [b, c]' = * R', R 2 ,  
or 

Expanding this matrix product, we see that a transmitted wave to the right ( z ,d )  

exp( 2ik k qt dz) = * R;R2 

Finally, we conclude that 

k qt dz =*  nn-ii In R;R2 ,  JbC 
being a disguised form of a Bohr-Sommerfeld quantization condition. 

4. The approximate values of R and T for a complex barrier 

One aspect of the values of R and T has been examined by Connor (1968), Dickinson 
(1970) and Froman and Dammert (1970), the authors considering the case corresponding 
to the parameter A being real. Dickinson and Connor derive effectively the same formu- 
lae, but tacitly assume that A may be complex. The correct formulae given by Froman 
and Dammert are thereby seriously mutilated, and the results of none of these authors 
provide any complete information as to the proper formulae valid when A is complex. A 
brief derivation of the approximate formulae for a complex barrier is given here. 
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The genera! barrier is compared with the parabolic barrier with exactly two transition 

Firstly considei the equation 
points. 

If n = +ikp2 -4, s = J ' ( 2 k )  etin(, we obtain the equation of the Weber parabolic cylindei 
functior. with the genera: solution 

w = MD,(S) + ND,( - s). 

Using their asymptotic forms (see Whittaker and Watson 1927. p 347) with 5 = k h. 
we obtain approximate forms for W containing h" exp( -)ikh2) and h-"- exp()ikh2). 
Into these asymptotic expressions we substitute the evaluated forms of the WKBJ 
solutions for large 4 = k h : 

(B. 4 )  = * exp( -+ikp2) exp()ikh2), = h. 

( -  P, <) = * h-+(2h/fl)+ikp' exp(+ikp2) exp( -$Ah2), ( =  -h .  

We find that 

w = * M ( ( .  p)(2/p)-+ikf12 exp(-+ikp2){J(2k) ef injn + N ( &  j?)(2/p)-+ikp2 exp(-3i 1'k P 2 ) 

x i J ( 2 k )  e - + i n } n - E d W  e-nni(p, 5)(2/p)+ikb'  exp(+ikp2) 
- n) 

(J(2k) e - + i n ) - n -  1, ( 5  = h) 

MJ(2nn) e- 
W = * M ( - P ,  ~ 3 ( 2 / p ) - + ~ ~ p '  exp(-$ikp2){J(2k) ""'(5. - P )  

x exp(+ikpZ){J(2k) + ~ ( - p ,  5 ) ( 2 / ~ ) - + ' ~ p '  
- n )  

x exp(-$ikp2) iJ(2k) e+in}n ( 4  = - A ) .  

When incidence takes place from the left. we choose N = 0 so that the coefficient of 
(p. 5 )  vanishes, giving 

coefficient of ( - p, 5 )  
coefficient of (5, - p) R =  

- - R e n i n  coefficient of (5, p) 
coefficient of ( 5 ,  - p) T =  (4) 

When incidence takes place from the right, we choose M = 0, yielding R' = R. 

Suppose now that we have a more general barrier governed by the equation 
T' = T. 

d2w 
dz2 
-+ k2(z2 - a2)g(z)w = 0, 
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where q(z) (zz -a2)g(z). The change of variables z = z(<), w(z) = X(t)(dz/d<)+ yields 

-+k2 - (z2-az)gX = residual terms in X. :; (dd;), ( 5 )  

We now choose z(5) so that 

or 
q' dz = ( r 2  - p')fd<, 

branches being chosen to correspond in both planes in the neighbourhood of the barriers. 
The integrals 

r 
J:a q* dz = J-P  (t2 -B2)*  d5 

ensure that z = - a  and < = - a  are corresponding transition points. Moreover, we 
assert that 

(-q)* dz = (p2 -<')id< = +np2, 
J - a  J - P  

ensuring that the transition points z = a, < = pcorrespond, at the same time determining 

The approximate solution of equation (5) is found by neglecting its right-hand side, 
which has no singularities at these two transition points by this choice of p. The compari- 
son equation (2) is thereby attained. Hence the approximate solution for X is the 
solution already found for W, the phase integral J E , _ P ( { z  -p2)"2 d< occurring in Win 
forms such as ( - p, 5 )  now being replaced by JLa qf dz. 

It follows that approximate values of R ,  R', T, T '  are given by results (3) and (4), with 
p2 replaced by 

P. 

,-a 

p2 = (-q)fdz, 
n - a  

where arg ( -  q) = 0 along the axis between the transition points when q is real, slightly 
deviating from zero when complex transition points are necessary. 

We conclude that 

R I  = * i(2n)-)cr';"l exp($cr,)exp( -icrl)r(+-ixl) (6) 
where 

and 
Rz = * i(2n)-*@2 exp(+na,) exp( - ict,)r($- ia,) 

where 
(7) 

with the stated convention for the interpretation of arg (-q)*. 
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Note that when al and a, are large, R I  = R ,  - i asymptotically by Stirling's 

If in either case a is real (and this is not to be expected in an eigenvalue problem), R 
formula. 

may be expressed in the form 

exp[i{ +n - CI +a In a + arg r() - ia)}] 
J ( l +  e-,'') 

- *  - 

where we have used the exact formula 

valid only when a is real. If a is large, 

argr(3-ia) = * a - a h a ,  

giving 

expressible also in the further approximate forms 

by the binomial. This formula must be used with extreme caution, since 

argr(+-ia) = a-aIna+O(a- ' ) ,  

yielding 

I t  can be seen that the exponentially small term is irrelevant compared with the term 
O(a- '). Yet investigators frequently use formulae (8) or (9) without a clear understanding 
of the approximations implied or the relevance of the small exponential term. Work that 
paysnoattention whatsoeverto theexistenceoferror termsisverymisguidedindeed. The 
origin of the term e-2nu as a series correction term in the modulus of R has been investi- 
gated by Heading (1972). 

Another common fallacy is to  use formulae (8) or (9 )  even when a is complex, taking 

when a is complex (provided Ie-2naJ is small), though perhaps omitting the factor i and 
sometimes the factor ) (see Hayes 1973). Some numerical consequences of this are 
examined in Q 6. 
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5. The complex double barrier 

Using the approximate values (6) and (7) found for R,  and R, containing the complex 
gamma functions, the eigenvalue condition (1) now becomes 

k (f-A)*dz =*nn- i i lnR,R,  k = * nn-+i{iz- In 271+ia, In a,  +ia, In a, +)n(al +a,)-i(a, +a,) 

+In r(+-ia,)+ In r(i-ia,)}, (10) 

this equation determining the eigenvalue A ,  and hence the transition points a, b, c, d .  
We now write explicitly A = R+i61, with 1611 << IRI, and we consider the three 

integrals involved in condition (10). When A = R, let b and c be the two real transition 
points defining the well. But when A is altered to  R + i61, let b and c become b + ab, 
c +  6c respectively, where f ( b  + 6b) = R + iSZ, so to the first order f '(b)6b = i61, or 

In the calculation of a,,  we write 

a ,  = - 

The first and third integrals vanish to  the first order, since the integrands vanish at 
z = a and b respectively, while the second integral gives : 

a1 =*!Jab(.-/)*( 1+ ) dz 
7I 2(R - f )f 

dz =*k[(R- f ) * d z + F / a b m  - = J ,  +i61K1, 

say. Similarly, 

dz a, =*;l k d  ( R - f ) * d z + F f -  - 
- J2+i6lK, ,  

(R-f)* - 

while the left-hand side of (8) is written in the form 

k 
J b c  

say, the suffix W referring to  the well, where a, b, c, d are the real zeros off - R. 

nJ,-i61xKw =*  m-${in- ln2~+i(J1+i61K1)ln(J ,+i61K,)  

The eigenvalue condition (10) becomes 

+ i(J, + i61K2) In ( J ,  + i61K2) + +n(J, + i61K , + J ,  + i61K ,) 

-i(Jl +iSIK, +J,+i61K2)+ In r(i- ial)+ In r($-ia,)}. 
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Accepting quantities to  the first order only, and resolving into real and imaginary parts, 
we have 

nJ, = * 7cn J ,  In J ,  + J ,  In J ,  ++z(K, + K,)61- (J1 +J,)  + arg r(+-iJ , )  

I-'($ - iJ,) 
+K,  Im r(+- iJ,) r(+ - iJ,) + arg I-(+- iJ,) + 

In 271+(K1 In J ,  + K ,  In J2)61-3n(J,  +J , )  - In l r (+-iJ l ) [  

I-'( $ - i J + K, Re r($-iJl) r($ - iJ,) 
- In Ir(~-iJ,)l-- 

The first equation contains zero-order terms, first-order terms and many error 
terms. To the zeroth order 

J ,  = n + $ + in -  { J , In J ,  + J ,  In J ,  - J ,  - J ,  + arg r(+- iJ,) + arg r(3- iJ,)}, 

corresponding in effect to Connor's and Dickinson's formula, explaining why the 
numerical results are so accurate in spite of their misguided analysis. 

Moreover, 

In l r (+-iJ l ) \  = In ,/{n/(cosh nJ,)} 

= i In 2n - + In { exp(TtJ,) + exp( - ZJ,)) 

= * + 1 n 2 n - + n ~  1 -1, 2 xp(-2nJ,), 

yielding 

(K, l n J l + K ,  lnJ,)61+){exp(-2nJ,)+ exp(-2nJ2)} 2Tt 

r'(i-iJl) 
I-(+ - i J  ,) +K,  Re 

What terms can be sorted out from equation (11) with any degree of certainty? 
Unfortunately none, since the terms exp( - 2nJ,) and exp( - 2x5,) are exponentially 
small compared with the increment 61 and with the error terms existing implicitly in the 
equation. Consequently no conclusions can be drawn ; certainly on analytical grounds it 
does not follow immediately that 

(12) 6 1 =  -LK-1 , {exp(-2nJl)+ exp(-2nJ2)}, 

where terms of the form O(61) are neglected on the right-hand side. I f  in a particular 
model, numerical investigation suggests that (12) does after all yield numerically good 
results, then this fact must be regarded as a coincidence and not analytically validated 
for all models, until it is conclusively proved that the error terms and the terms involving 
61 on the right-hand side of (1 1) are in fact negligible in toto compared with the term 
i{exp( - 2nJl)+exp( - 27~5,)). If authors refuse to recognize the existence of implicit 
error terms, then equation (12) has no meaning, and it cannot properly be used in any 
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application of the theory. Even solving equation (1 1) directly as it stands for 61 cannot 
be done with any certainty, owing to  the inherent errors involved in the = * sign arising 
from the WKBJ method. The methods presented in this paper provide no way out of 
this difficulty, and only by a deeper analysis of the problem based, for example, on the 
higher-order approximations of Froman and Froman and their collaborators, can the 
nature of the implicit error terms be sorted out. 

6. The single complex barrier examined 

The exact reflection coefficient for a parabolic barrier with two complex transition 
points k p has been found in equation ( 3 )  to be 

R = i(271)-'/2~'" ein" e-iar(i- iu), 

with +kp2 = a and - n  < argu < n. Asymptotically, R - i provided argu # -in, 
in which case r($-iu) would have a series of poles for appropriate values of [U/. In this 
formula for R ,  it must be appreciated that - p is taken to  be the 'phase-reference level' 
for the incident and reflected waves. Any adjustment to a real phase-reference level is 
trivial and not of direct relevance here, though i t  would considerably alter the value of 
IR(, and the curves given in figure 3 must be interpreted in the light of this fact. 

When a is real, two cases arise. 
(i) When arg a = 0, 

I t  has been suggested that the formula 

might be used for all arg a for which le-2na( < 1, namely -in < arg u < in. Hayes 
(1973) even omits the factor 4, and seeks to  provide a physical argument based on 
physically reflected evanescent and growing waves in a barrier to support his proposition. 
But this physical argument is without foundation, since there is not taken into account 
the error terms existing implicitly in the WKBJ solutions. The realization of the 
existence of these error terms would prevent the use within the barrier of any linear 
combination of evanescent and growing WKBJ solutions. Hayes also produces numer- 
ous numerically computed curves showing a comparison between the use of (13) and 
exact calculations. M S Smith (1973, private communication) has recalculated these 
curves using the factor $. 

(ii) When arg U = n, we find that 

Again it has been suggested that we may take 

whenever leZffUl < 1, namely -n < arg U < -in, +n < argu < n. 
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Of course, when IaJ is large, the modulus of these suggested false formulae is nearly 
unity, in keeping with its correct value. The deviation of (RI, from IRI, (where f and c 
stand for false and correct) is then very small, but this observation cannot give any 
justification for using analytically false formulae. The falseness of the assumptions can 
be seen by presenting some curves calculated when la( is not large. We compare 

(R(a)l, = (271)- 1/2(ah e+" e-T($--ia)\ 

with 

with no suggested false formula possible when arg c1 = +in. 
Writing a = r eie = r cos 0 + ir sin 8 = x + iy, we have 

IR(, = exp{ - In 271 + x(3n - e) + y( 1 - In r )  + Re In r(f + y - ix)}. 

This is to be compared with 

-71 < arga < -371, 
$71 < arga < n. 

A complete comparison of lRlc with (RIr for all x and y would require the computation 
of the surfaces [RI, and lRlf above the x ,y  plane. Instead, we have computed these 
moduli within the range - 1 < x < 1 for y = 0, 0.2, 0.4, 0.6, 0.8, 1.0, and these results 
are presented in figure 3. The computation was carried out to 9 significant figures 
using the Tables of the Gamma Function for Complex Arguments (1954) which give 
In T(z) = U+iVfor Re z = O.O(O.1)lO.O and Im z = O.O(O.1)lO.Ocorrect to  12 significant 
figures, and using a Sumlock Compucorp 3226 programmable electronic desk com- 
puter displaying results to 10 figures, a model that possesses the facility of instant 
computation of the special functions involved. 

The graphs display a wide deviation of IRI, from IRI,, showing beyond doubt the 
impossibility of conceiving that the false formula may be useful in analytical work. 
Whereas the JRJ, curves are uniform in their properties-all have a minimum when x = 0, 
yet the lRlf curves are more erratic, sometimes possessing a minimum and sometimes a 
maximum at x = 0. We have not illustrated the case when IRJ, has a pole at x = 0;  
such occurs when y = Ima  = 0.5. Neither have we illustrated how the [RI, curve 
with a minimum changes to a curve with a maximum; such occurs near where 
cos 271y = -$, namely, y = +, for which 

IR(, = (1 - e2nx + e4nx)- 114, x < 0. 

The discontinuity in gradient of the /RIf curves at x = 0 arises from the fact that 
distinct formulae are used to the right and to the left. Only when y = 0 does the (RI, 
curve also have a discontinuity in gradient at x = 0, arising from the term ~(371-e) 

occurring in [RI, ; in any case [RIf = [RI, when y = 0 (that is, when arg a = 0 , ~ ) .  



Approximate use of the complex gamma function 97 1 

y\, 1"" / '  

l0 ,7  

l o  9 
-I 0 -0.5 0 0.5 I O  

1 1  n ' / - D L  
' -: 

10.7 f,., 
Figure 3. Comparison of the moduli of the reflection coefficients calculated from 
false formulae for a single potential barrier with energy loss. 

exact and 

We may finally mention other approximations that have been suggested. Ford and 
Hill (1959) and Miller (1968) give 

arg r(++ia)  2: $ ln{(a/e)2+(1/4y)2}, 

r (++ia)  2: J(n/cosh na){(a/e)' +(1/4~)~}* ' " ,  (14) 

a ( 4;2) 2a{ 1 + (a2 - $)/60(a2 + i)'} 
2 24(a2 + $) 

argr (++ia)  2: -In 1+- - 

- 2ia{ 1 + (a2 - a)/60(a2 + i).}) 
r (++ia)  2: ( L) 1'2( 1 exp( 2qa2 + 4) 

cosh na 

(15) 

(16) 

when a is real and positive. If, when a is real and positive, we write exactly, 

I-()+ ia) = J(n/cosh m) exp{ i arg r(i+ ia)} r(a)  eie('), 



972 J Heading 

say, where r (a )  and &a) are real functions of real a, then when a is complex formula (16) 
still persists, thereby making r and 6 complex functions not in any sense now related 
to  modulus and argument. Such a form as (16) tends to  be very misleading, suggesting 
that the hyperbolic functions enter the form of the complex gamma function, whereas 
this is not really so ; only when a is real can this rightly be asserted. But when approxi- 
mate forms for 6(a) are used as in (14) and (1 5),  then the use of these expressions when 
CY is complex is a much more delicate question. Miller gives various curves showing how 
good the approximations are for the argument when a is real. The approximations are 
uniform for all real a, but when a is complex this cannot be asserted. In fact, if a is 
placed equal to  - i i  in (14), a pole appears on the right-hand side, which is quite absent 
from l-( 1). This could not occur in the exact form (16), since the offending denominator 
cosh za would in effect be cancelled by a corresponding factor in 0(a). It is, in fact, this 
nonuniformity that causes the breakdown in the suggested formula (13) when a is 
complex. The factor i in its numerator represents an approximate phase factor when 
CY is real, and cannot be extended uniformly into the complex domain when a is complex. 

In any case, approximations as (14) and (15) are only immediately useful when the 
gamma functions enter the exact solutions of a barrier problem-in particular for the 
parabolic barrier and for the other barriers investigated by Heading (1972). As soon 
as semiclassical analysis of the barrier problem is employed, the question of the balance 
of differing error terms must be carefully weighed. The magnitude of the correction 
terms in the approximate versions of the gamma function (14) and (15) must be taken 
into account together with the inherent errors in the WKBJ solutions, and the errors 
involved in using barrier formulae derived from the parabolic barrier for the non- 
parabolic case. The paper by Miller does not seem to recognize this question of the 
balance of errors, which, it is appreciated, is a very awkward one. The object of our 
present paper has been to  pursue the analysis as far as possible without knowing the 
nature of the inherent errors in the WKBJ solutions, and if this knowledge is not 
forthcoming, then further correction terms introduced in other parts of the analysis 
must be viewed with extreme suspicion and caution. 

7. Conclusions 

We have examined exact and approximate solutions of the potential barrier problem, 
showing how the complex gamma function must arise, and also how small correction 
terms cannot be relied upon when they stand in conflict with many small error terms 
allowed to exist in the phase-integral method. Moreover, we have discussed under 
what conditions it is legitimate to  simplify the gamma function, either accurately or 
approximately. We have also examined certain recent work, and have compared 
numerically certain correct and false formulae which have often been used by some 
authors. I t  is hoped that the paper may terminate the manipulation of the complex 
gamma function under nonlegitimate conditions. 

References 

Berry M V and Mount K E 1972 Rep. Prog. Phys. 35 315-97 
Budden K G 1961 Radio Waves in the Ionosphere (Cambridge: Cambridge University Press) 
Connor J N L 1968 Molec. Phys. 15 3 7 4 6  



Approximate use of the complex gamma function 973 

Dickinson A S 1970 Molec. Phys. 18 44-9 
Ford K W and Hill D L 1959 Ann. Phys., NY 7 239-58 
Froman N and Dammert 0 1970 Nucl. Phys. A 147 62749 
Froman N ,  Froman P 0, Myhrman U and Paulsson R 1972 Ann. Phys., Lpz 74 314-23 
Furry W H 1947 Phys. Rev. 71 360-71 
Hayes M G W 1973 J. Phys. A :  Math., Nucl. Gen. 6 177-91 
Heading J 1962 An Introduction to Phase-Integral Methods (London : Methuen) 

~ 1972 Proc. Camb. Phil. Soc. 71 353-67 
- 1973 Proc. Camb. Phil. Soc. 74 in the press 
Miller W H 1968 J. chem. Phys. 48 1651-8 
Tables of the Gamma Function for Complex Arguments 1954 Natn. Bur. Stand. appl. Maths. Ser. N o  34 

Whittaker E T  and Watson G N 1927 A Course of Modern Analysis (Cambridge: Cambridge University Press) 
Yngve S 1972 J. math. Phys. 13 324-30 

(Washington: US Government Printing Office) 


